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Objectives   Sickness absence is the outcome in many epidemiologic studies and is often based on summary 
measures such as the number of sickness absences per year. In this study the use of modern statistical methods 
was examined by making better use of the available information. Since sickness absence data deal with events 
occurring over time, the use of statistical models for survival data has been reviewed, and the use of frailty models 
has been proposed for the analysis of such data.
Methods   Three methods for analyzing data on sickness absences were compared using a simulation study 
involving the following: (i) Poisson regression using a single outcome variable (number of sickness absences), 
(ii) analysis of time to first event using the Cox proportional hazards model, and (iii) frailty models, which are 
random effects proportional hazards models. Data from a study of the relation between the psychosocial work 
environment and sickness absence were used to illustrate the results.
Results   Standard methods were found to underestimate true effect sizes by approximately one-tenth [method 
i] and one-third [method ii] and to have lower statistical power than frailty models.
Conclusions   An uncritical use of standard methods may underestimate the effect of work environment expo-
sures or leave predictors of sickness absence undiscovered.
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Several recent epidemiologic studies of sickness absence 
report the results of Poisson regression models based on 
the number of sickness absences or the total number of 
sickness absence days for each person in a given fol-
low-up period (1, 2). While the number of workdays lost 
due to sickness absence is of great interest to employers 
and others, this contribution is limited to a discussion of 
the analysis of sickness absences. The problem of how 
to measure sickness absence has been discussed in the 
literature (3).

The statistical methods applied in epidemiologic 
studies of sickness absences are almost completely 
limited to studies that focus on the frequency of sick-
ness absences using Poisson regression or the time to 
the first sickness absence using the Cox proportional 
hazards model.

Poisson regression analysis describes effects of co-
variates on sickness absence rates through relative effect 
estimates referred to as rate ratios. Overdispersion is 
often encountered in sickness absence data, with some 

people having many absences and many having none, 
and it is therefore often included in the Poisson regres-
sion model (4–6). Unequal follow-up time (eg, when 
people quit their job during the follow-up period) is also 
a typical situation, and the actual follow-up time should 
then be included as an offset. The actual time under risk 
can be computed when data from company registers on 
sickness absences are used. Cox analysis of time to the 
first event is a standard epidemiologic approach, but, as 
a consequence, information is discarded because people 
are censored after their first sickness absence.

Frequencies and the time to events are different ex-
pressions of the same pattern, and, if no one has more 
than one period of sickness absence, the two methods 
give the same result. This is the case in a standard 
survival analysis in which no person can die more 
than once. In studies of sickness absence, however, it 
is common that people have more than one sickness 
absence. This situation yields data with multiple events 
per person. Those with several sickness absences will 
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then influence the analysis more than those with few 
sickness absences.

It is likely that the risk changes when people return 
to work after a sickness absence, and the standard Pois-
son regression approach does not take this possibility 
into account. Furthermore, if this is the case, then the 
Cox analysis of time to first event focuses on the onset 
of the first sickness absence and may not be immedi-
ately comparable to the analysis of sickness absences 
in general.

This paper examines how modern survival analysis 
can be used when the first and last day of all absences 
(sickness absences and other absences) are recorded (eg, 
when data come from company registers on sickness 
absences).

Methods

The Intervention Project on Absence and Well-being 
(IPAW) is a controlled intervention study with 5 years of 
follow-up (7). The following three types of workplaces 
were included: workplaces assigned for later interven-
tion, control workplaces with many sickness absences, 
and control workplaces with few sickness absences. 
Intervention effects were not included in our study.

Data from one of three organizations—a large phar-
maceutical company—taking part in IPAW were consid-
ered in this study. A total of 731 persons participated, 
and for 725 of these persons sickness absence data were 
available. Data on exposures in their work environment 
came from questionnaires, ascertained between January 
and April 1997. Sickness absence data for the period 
April 1997 to April 1998 were obtained from workplace 
registers of sickness absence. The register data for each 
person consisted of information about the first and last 
day of every absence period and the type of absence 
(sickness absence or other absence). An example is 
shown in figure 1, where data from a person with two 
sickness absences and an absence due to something 
other than sickness are shown.

Note that an entire year, consisting of 365 days, is 
shown in figure 1. In other situations weekends and 
holidays could be excluded from the total risk time. The 
most important thing in connection with this approach 
is that the same procedure is used for all persons. The 

person shown in figure 1 was employed and was, there-
fore, at risk of being sick listed for 85+(166–89)+(310–
180)+(365–330)=327 days, and two events occurred. 
With the use of the standard Poisson regression ap-
proach, this person would have two events as the out-
come, and the total time, 327 days, at risk could be 
included as the offset variable. With time to first event 
as the outcome, this person would be at risk for 85 days 
and have one event.

The effect of four psychosocial work environment 
factors (skill discretion, decision authority, predict-
ability, and meaning of work) on sickness absence has 
been studied in the examples. These factors have been 
described in detail elsewhere (7).

The following three methods for the analysis of sick-
ness absences were compared: (i) the “standard” Poisson 
regression approach using a single outcome variable 
(number of sickness absences) for each person, (ii) Cox 
analysis of time to first event, later events being ignored, 
and (iii) frailty models allowing dependence between 
multiple events. Of these three methods, the first and 
second are simple and easy to implement with standard 
software, but they are inefficient in the sense that not all 
of the available information is used The third method is 
more efficient but requires assumptions describing the 
heterogeneity in the population.

The results of a simulation study of the precision, 
bias, type I error, and statistical power of these methods 
under different conditions have also been presented.

Poisson regression analysis

Poisson regression analysis assumes that the number of 
sickness absences, N, in a given follow-up period, say, 
a year, is Poisson-distributed and describes effects of 
covariates on the logarithm of the mean, µ=E(N). The 
analysis yields relative effect estimates that are some-
times referred to as rate ratios. Two problems are often 
encountered for sickness absence data, overdispersion 
and unequal follow-up time.

For Poisson distributed data the variance is equal to 
the mean, but for sickness absence data the variance is 
frequently substantially larger than the mean. A simple 
way to model this situation is to allow the variance to 
have a multiplicative overdispersion factor, V(N)=ρµ. In 
such a case, the parameter estimates are not affected, but 

Figure 1: Sickness absence data for one person: An illustration of the time

to events.

w: work
s: sickness absence
o: other absence

...........................--o--............................

.............-s-...............................--s--........
------w------...-----w-----.....-------w-------......---w--- 

0...........85.89.........166..180............310...330...365

time (in days)

23

Figure 1. Sickness absence data for one 
person: an illustration of the time to events.
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the confidence intervals are. When a scale parameter, ρ, 
is included, a quasi-likelihood function (8–9) is used, but 
since most of the asymptotic theory for log likelihoods 
also applies to quasi-likelihoods, computing standard 
errors is justified. This approach is often used in stud-
ies of sickness absence (4–6). Ignoring overdispersion 
leads to a model with poor fit to the data, where the 
standard errors will be unrealistically small. Therefore, 
evaluating significance based on these models can yield 
incorrect results.

The Poisson distribution is only reasonable if all 
persons are followed for the same period of time, and 
this approach is not always the case for sickness absence 
data (eg, when people quit their job or are on leave for 
a period of time during the follow-up period). This 
possibility can be included in the Poisson regression 
model if the logarithm of the actual follow-up time is 
used as an offset (a covariate with a constant regression 
coefficient equal to 1). Unequal follow-up time is often 
encountered in survival analysis, and it is referred to as 
censoring. Indeed, in most studies of events occurring 
over time, it is crucial that actual time at risk be taken 
into account. When data come from company registers 
of sickness absence, it will often be possible to compute 
the actual time at risk.

Cox analysis of time to first event

Events occurring over time can be described by the 
number of events occurring in a specified period (eg, 
1 year) or by waiting times between events. A model for 
the occurrence of events can be specified using the in-
tensity or hazard function λ(t) conditionally on the event 
history up to time t. This function specifies that the risk 
of an event in the interval from t to t + h is λ(t) · h if the 
person is at risk just before time t. The Cox proportional 
hazards model assumes that the intensity function for 
person i with covariate vector Xi is given by

λi(t)=λ0(t) exp(Xiβ)Yi(t),	 equation 1

where λ0(t) is a nonnegative function specifying the 
hazard for persons with all covariates equal to 0, called 
the baseline hazard, and Yi(t) is an indicator equal to 1 
if person i is at risk just before time t and 0 otherwise. 
The ratio of hazards for two persons at risk is constant 
over time, and, for this reason, the model is called the 
proportional hazards model. For given Xi, the mean of 
the number, Ni, of sickness absences in a 1-year follow-
up period is

E(Ni)=(∫0

365
 λ0(t)E(Yi(t))dt)exp(Xiβ).	 (equation 2)

A Poisson regression model for the number, Ni, of 
sickness absences will thus estimate the same param-
eters if all risk indicators Yi(t) are equal to one (10). 
This assumption implies that people are at risk again 

immediately after an event, and therefore it does not 
apply to sickness absence data because people will not 
return to work immediately after reporting sick. 

Frailty models 
Models given by equations 1 and 2 are often unreal-
istic because the covariate vectors cannot explain the 
variation in the rate of events between persons, a phe-
nomenon referred to as overdispersion (compare with 
the preceding section on Poisson regression analysis). 
More general models, called frailty models, are based 
on hazard functions

λi(t)=uiλ0(t) exp(Xiβ)Yi(t), 	 (equation 3)

including random person effects, ui, called frailties, 
arising from some distribution. For practical uses of 
such a model, the standard approach (11) is to assume 
that ui follows a gamma distribution with mean E(u)=1 
and unspecified variance V(u)=φ. Models based on the 
hazards (3) allow correlation between multiple events. 
Furthermore, the random person effect can be used to 
quantify the heterogeneity in the population through the 
variance (φ).

The number, Ni, of sickness absences in a 1-year fol-
low-up period has the same mean structure as equation 
2, but it has variance V(Ni)=µi + µ2

i φ, thus including 
overdispersion.

The frailties are characteristics of the persons and 
can be viewed as, for example, susceptibility. As they 
are unobserved variables, the EM (expectation-maxi-
malization) algorithm (12) can be used to estimate the 
parameters (13). Using gamma-distributed frailties in a 
model such as equation 3, a maximum likelihood solu-
tion implemented in computer program R (14) is avail-
able (15). Frailty models quantify the person variation 
and yields an estimate of the heterogeneity, V(u)=φ. 
Confidence intervals for φ can also be computed (15).

Results

In the year following the exposure measurement, the 725 
persons, for whom sickness absence data were available, 
had a total of 2357 sickness absences, and 1160 other 
absences (modeled as time not at risk using censoring). 
Furthermore, observations were censored at the end of 
the follow-up period (April 1998). The mean number of 
sickness absences was 3.2 (median 2), 158 persons had 
no sickness absences, and one person had 60 absences.

The three methods, Poisson regression, Cox analysis 
of time to first event, and frailty models, were compared 
using the IPAW data. The Poisson regression models 
included a scale parameter to account for overdispersion 
and the logarithm of the actual time at risk as an offset 
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from zero (results not shown). The heterogeneity be-
tween persons was thus substantial, but it is likely that 
the heterogeneity could be even larger in studies of 
people from many different organizations, for example, 
in general population studies.

Simulation study

A simulation study was used to compare the three 
methods (Poisson regression, Cox analysis of time to 
first event, and frailty models). The Poisson regression 
models included a scale parameter to account for over-
dispersion and the logarithm of the actual time at risk 
as an offset variable.

Data sets with 600 persons were simulated using 
exponentially distributed waiting times, where the log 
of the intensity depended on a single standard normally 
distributed predictor, x, and a gamma distributed frailty, 
u, with E(u)=1 and V(u)=φ:

log(λi(t))=β0 + xi b + log(ui).	 equation 4

Time to other absence did not depend on the value of 
the predictor and the frailty. The same was true for the 
duration of sickness absence. Time until the occurrence 
of other absence was simulated to have a mean that was 
six times greater than the average duration of sickness 
absence. Parameter estimates β and the rejection rates 
for tests of the null hypothesis, H : β=0, were studied 
under different conditions.

Data sets were simulated using the values exp(β)= 
1.00, 0.97, 0.94, 0.91 for the true effect size (exp(β)=1.00 
corresponding to the null hypothesis), and the values 
f=0, 0.5, 1.0 for the heterogeneity (the variance in the 
distribution of the frailty u). The f=0.5 was chosen 
based on the value found in the IPAW data, and the value 
f=1.0 corresponded to situations with more heterogene-
ity (eg, general population studies).

The mean and the empirical standard deviation of 
the estimates β were computed for each combination 
of true effect size and heterogeneity. The correspond-
ing effect estimates and 95% confidence intervals are 
shown in table 2.

All three methods provided unbiased effect estimates 
under the null hypothesis. Poisson regression under-
estimated the effects slightly for large values of the 
heterogeneity. The Cox analysis of time to first event 
provided correct effect estimates when f=0, as would 
be expected, but underestimated the effects as the het-
erogeneity increased. The frailty model was the model 
used to generate the data and, of course, estimated the 
effects correctly. Poisson regression analysis without 
use of an offset variable was also considered, and it 
consistently yielded effect estimates that were too small. 
This problem increased as the heterogeneity increased 
(results not shown).

variable. Estimated rate ratios (RR) adjusted for the 
effect of gender, age, and intervention assignment are 
shown in table 1. Hazard ratios (HR) adjusted for the 
effect of gender, age, intervention assignment from the 
Cox analysis of time to first event, and frailty models 
are also shown in table 1.

Poisson regression found decision authority, predict-
ability, and meaning of work to be significantly associ-
ated with sickness absence. An increase of one standard 
deviation for decision authority was significantly asso-
ciated with a 13% reduction in the number of sickness 
absences [95% confidence interval (95% CI) 6–20]. For 
predictability and meaning of work, an increase of one 
standard deviation was significantly associated with a 
reduction of 9% (95% CI 1–16) and 8% (95% CI 1–15), 
respectively, in the number of sickness absences.

In the Cox analysis of time to first event, no work 
environment factors were significantly associated with 
sickness absence.

According to the frailty models, all of the factors 
were significantly associated with sickness absence. 
An increase of one standard deviation for skill discre-
tion was associated with a 9% lower risk of sickness 
absence (95% CI 1–16), whereas a corresponding in-
crease in decision authority was associated with a 15% 
lower risk of sickness absence (95% CI 8–21). For 
predictability and meaning of work, the effects equaled 
those found using Poisson regression. On the average, 
Poisson regression thus underestimated the effects by 
(3=9+2=15+0+0)=4=12%.

For all four of the fitted frailty models, the estimated 
heterogeneity differed significantly from 0. Estimates of 
the heterogeneity φ and the corresponding 95% confi-
dence intervals were computed. The estimated heteroge-
neity in all of the analyses was 0.45, and the confidence 
intervals clearly indicated that the heterogeneity differed 

Table 1. Impact of psychosocial work environment factors on 
sickness absences in a 1-year follow-up period according to Pois-
son regression, Cox analysis of time to first event, and frailty mod-
els—data from workplaces taking part in the Intervention Project 
on Absence and Well-being (N=725). (RR = rate ratio, 95% CI = 
95% confidence interval, HR = hazard ratio)

Factor	 Poisson	 Time to	 Frailty  
	 regression a	 first event b	 models

	 RR c	 95% CI	 HR c	 95% CI	 HR c	 95% CI

Skill discretion	 0.94	 0.87–1.01	 0.97	 0.90–1.04	 0.91	 0.84–0.99
Decision authority	 0.87	 0.80–0.94	 1.02	 0.94–1.09	 0.85	 0.79–0.92
Predictability	 0.91	 0.84–0.99	 0.94	 0.87–1.02	 0.91	 0.84–0.98
Meaning of work	 0.92	 0.85–0.99	 0.99	 0.92–1.07	 0.92	 0.85–0.99

a Logarithm of actual time at risk included as an offset variable.
b Cox analysis.
c Adjusted for the effect of gender, age, and intervention assignment. 

Exposures have been standardized, and these estimates thus show the 
effect of an increase of one standard deviation.
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For f=0.5, the value closest to that observed in the 
IPAW data example, average effect estimates (3%, 6%, 
and 9%, respectively) were reduced by one-third (to 
2%, 4%, and 6%, respectively) in the Cox analysis of 
time to first event and by one-tenth (to 3%, 5%, and 8%, 
respectively) in the Poisson regression model.

The information presented in table 2 describes the 
estimation precision and is based solely on the effect 
estimates computed from the 1000 simulated data sets. 
Table 3 and table 4, on the other hand, describe proper-
ties of statistical tests. Table 3 shows the empirical type 
I error rates for the three methods (Poisson regression, 
Cox analysis of time to first event, and frailty models) 
for different values of the heterogeneity f. Wald tests us-
ing the ratio of effect estimates and asymptotic standard 
errors were used.

For the Poisson regression model, the type I error 
was too small when f>0. The type I error was close to 
the nominal 5% for the two other methods. A Poisson 
regression analysis without the overdispersion parameter 
was also considered, but the type I error was much too 
large when f>0 (results not shown).

Table 4 shows the empirical rejection rates for a 5% 
level Wald test for the three methods for different values 
of the true effect size and the heterogeneity.

The Cox analysis of time to first event had less sta-
tistical power than the two other methods, and the frailty 
model was the most powerful. For all three methods, the 
power decreased as the heterogeneity increased.

Discussion

Poisson regression is often used in epidemiologic stud-
ies of sickness absence. The importance of including 
actual time at risk as an offset variable and introduc-
ing a scale parameter to account for overdispersion in 
Poisson regression is well-known. Inclusion of a scale 
parameter addresses the problem of overdispersion, and 
the problem of unequal follow-up time can be addressed 
using an offset variable when the actual follow-up time 
is known. 

Poisson regression implicitly assumes that people 
are at risk of sickness absence again immediately after 
a sickness absence, and, furthermore, it does not distin-
guish between the events occurring for different persons 
and multiple events occurring for the same person. These 
problems can be addressed using the frailty models 
discussed in this paper. 

Models based on intensities such as those in equa-
tions 1 and 3 are natural descriptions of events occur-
ring over time. The Cox proportional hazards model is 
a well-known model for estimating differences in risk 
when (possibly censored) survival times are analyzed. 

Table 3. Empirical type I error rates a for a 5%-level Wald test for 
the Poisson regression, the Cox analysis of time to first event, and 
the frailty models depending on heterogeneity f (the variance in 
the distribution of the frailty).

Effect size 	 Poisson	 Time to first 	 Frailty  
	 regression (%)	 event b (%)	 models (%)

0% 	 f = 0.0 	 4.0	 4.5	 4.5
	 f = 0.5 	 2.9	 6.0	 5.5
	 f = 1.0 	 2.1	 4.7	 4.3

a Based on 1000 simulated data sets with a sample size of 600.
b Cox analysis.

Table 4. Empirical rejection rates a for a 5%-level Wald test for the 
Poisson regression, the Cox analysis of time to first event, and the 
frailty models depending on true effect size and heterogeneity f 
(the variance in the distribution of the frailty).

Effect size 	 Poisson	 Time to first	 Frailty  
	 regression (%)	 event b (%)	 models (%)

3%	 f = 0.0 	 25.2	 11.8	 38.4
	 f = 0.5 	 9.4	 7.0	 11.8
	 f = 1.0 	 5.9	 7.1	 9.3
6% 	 f = 0.0 	 76.9	 29.0	 91.8
	 f = 0.5 	 35.8	 16.6	 43.4
	 f = 1.0 	 18.6	 13.8	 26.0
9% 	 f = 0.0 	 98.0	 60.1	 99.9
	 f = 0.5 	 70.3	 31.5	 78.8
	 f = 1.0	  38.0	 21.3	 53.5

a Based on 1000 simulated data sets with a sample size of 600.
b Cox analysis.

Table 2. Effect estimates and 95% confidence intervals a (95% CI) 

for the Poisson regression, the Cox analysis of time to first event, 
and the frailty models depending on true effect size and hetero-
geneity f (the variance in the distribution of the frailty). (HR = 
hazard ratio)

Effect size 	 Poisson	 Time to first	 Frailty  
	 regression 	 event b 	 models 

	 HR	 95% CI	 HR	 95% CI	 HR	 95% CI

0%	 f = 0.0 	 1.00	 0.96–1.04	 1.00	 0.92–1.08	 1.00	 0.97–1.04
	 f = 0.5 	 1.00	 0.94–1.06	 1.00	 0.92–1.09	 1.00	 0.93–1.07
	 f = 1.0 	 1.00	 0.92–1.09	 1.00	 0.92–1.10	 1.00	 0.92–1.09
3%	 f = 0.0 	 0.97	 0.93–1.02	 0.97	 0.89–1.06	 0.97	 0.94–1.01
	 f = 0.5 	 0.97	 0.92–1.03	 0.98	 0.90–1.07	 0.97	 0.91–1.04
	 f = 1.0 	 0.97	 0.89–1.06	 0.99	 0.90–1.08	 0.97	 0.89–1.06
6%	 f = 0.0 	 0.94	 0.90–0.98	 0.94	 0.87–1.02	 0.94	 0.91–0.97
	 f = 0.5 	 0.95	 0.89–1.01	 0.96	 0.88–1.04	 0.94	 0.88–1.00
	 f = 1.0 	 0.94	 0.87–1.03	 0.97	 0.88–1.06	 0.94	 0.86–1.04
9%	 f = 0.0 	 0.91	 0.87–0.95	 0.91	 0.84–0.99	 0.91	 0.88–0.94
	 f = 0.5 	 0.92	 0.87–0.98	 0.94	 0.86–1.02	 0.91	 0.85–0.97
	 f = 1.0 	 0.92	 0.85–1.00	 0.95	 0.87–1.04	 0.91	 0.83–1.00

a The confidence intervals were computed from the mean and empirical 
standard deviation of b estimates from 1000 simulated data sets with a 
sample size of 600.

b Cox analysis.
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When the Poisson regression approach is used, multiple 
events for the same person are assumed to be indepen-
dent. In the frailty model, the multiple events are as-
sumed to be conditionally independent, given the person 
effect (the frailty). Frailty models estimate relative risks 
from repeated events while taking the heterogeneity 
between persons into account. 

In this paper we have shown that the Poisson regres-
sion analysis underestimated effects, and this problem 
increased as the heterogeneity (f) increased, but was 
also seen for f=0. This finding stresses the point that 
Poisson regression and time-to-event analyses only 
yield identical results if persons are at risk again imme-
diately after an event has occurred, an assumption that 
is unrealistic for sickness absence data. An analysis of 
the time to first event also underestimated effects when 
f>0. In these cases the Cox proportional hazards model 
is not correct because the effect of the frailty (u) is not 
included. These findings can be regarded as bias caused 
by an omitted covariate (15), and, when the effect of u is 
ignored the proportional hazards assumption is violated. 
The Poisson regression model uses all of the available 
information, but has two potential problems. It ignores 
the fact that the multiple events for each person can 
be correlated, and it does not distinguish between risk 
time before the first sickness absence and risk time upon 
return to work after a sickness absence.

The Poisson regression model has two potential 
problems. It ignores the fact that the multiple events for 
each person can be correlated, and it does not distinguish 
between risk time before the first sickness absence and 
risk time upon return to work after a sickness absence. 
The first problem is addressed in frailty models, as the 
introduced random person effect has the same value 
for all the events for a person, and they are thus cor-
related.

The second problem is also very important, as it is 
likely that the risk of sickness absence is higher when a 
person returns to work after a sickness absence. For both 
the Poisson regression model and the frailty models, 
previous sickness absence can be included as a time-
dependent covariate. In reference again to figure 1, the 
contribution of this person to the analysis is four sets of 
time at risk and two events, and, while covariates like 
gender and (baseline) age will not change, the number 
of previous sickness absences could be included as a 
time-dependent covariate, taking the values 0, 1, 1, and 2 
in the four risk time sets, respectively. With the Poisson 
regression model, it is, therefore, possible to determine 
whether the number (or the duration) of previous sick-
ness absences affects the risk of sickness absence, but 
this model would be based on the assumption that the 
effect of previous absences is the same for all persons. 
Including previous sickness absence as a time-dependent 
covariate is also possible in frailty models; thus both a 

shared effect of previous sickness absence (common to 
every person in the study) and an individual effect model 
(modeled through the frailty) can be added. This ap-
proach, with both previous event history and individual 
frailty has been used in psychiatric epidemiology (16).

When the data from the IPAW study were analyzed, 
the Poisson regression model yielded effect estimates 
of the same magnitude as those of the frailty models, 
but the Cox analysis of time to first event was unable to 
disclose significant associations between work environ-
ment factors and sickness absence, the loss of informa-
tion thus being illustrated. The simulation study yielded 
similar findings. The Cox analysis of time to first event 
was, by far, the least powerful approach. The Poisson 
regression model was almost as powerful as the frailty 
models. For all three methods the power decreased as 
the heterogeneity increased.

The frailty model estimates differences in risk after 
the heterogeneity between persons has been accounted 
for. Furthermore, it quantifies the heterogeneity in the 
population. The gamma distribution is chosen for the 
frailties out of mathematical convenience. Other frailty 
distributions are available (11), but the computationally 
intensive EM algorithm (12) is required in order to per-
form full maximum likelihood estimation.

Marginal models are an alternative to frailty mod-
els. Such models estimate population-averaged risk 
associated with each exposure. The risk of a random 
sample of exposed persons is compared with that of a 
random sample of unexposed persons. These models 
only specify the marginal means, whereas frailty models 
are models for the entire process. Thus marginal models 
can yield a simple interpretation of covariate effects on 
the means. However, for a simple marginal model, in 
general, the effect of covariates on the intensity will not 
be simple. On the other hand, if the frailty model is cor-
rect, the marginal model will yield biased estimates. It 
is well-known that, for logistic regression models with 
random effects, the marginal model yields attenuated 
effects (17–18), and a similar result applies for gamma 
frailty models (19).

Both types of model are capable of accounting for 
intraindividual correlation caused by unobserved het-
erogeneity. We have chosen to concentrate on frailty 
models, mainly because they are a rather straightforward 
extension of both the Poisson model and the Cox model 
for time until the first event. In addition, frailty models 
rely on less restrictive assumptions concerning the cen-
soring pattern (10), although it should be noted that they 
rely critically on the assumption that times not at risk do 
not depend on the frailty.

The frailty models have many potential applications 
in work environment research. Examples of relevant 
fields of research are studies of accidents, critical in-
cidents, production errors, violence, harassment, and 
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psychological hassles at work. The methods could also 
be employed in studies of end points having the char-
acter of periodic attacks such as migraine, tension-type 
headache, low-back pain, cervicobrachial disorders, 
and allergic reactions, or in studies of variations in 
physiological parameters. A condition for using these 
methods is that the information on the events is col-
lected in a way that the time between the events can be 
registered reliably. 

The example presented in this paper used detailed 
information to calculate the time at risk. As long as 
information about the events is available, frailty mod-
els can be applied, and the findings are likely to be 
relatively robust, as relative comparisons between the 
risk of sickness absence is studied. However, if some 
persons are at risk for considerably shorter periods of 
time, ignoring this situation can be a source of bias. One 
example would be when women on maternity leave were 
considered to be at risk of sickness absence.

Standard methods were found to underestimate true 
effect sizes and to have lower statistical power than 
frailty models. Uncritical use of standard methods may 
thus underestimate the effect of work environment expo-
sures on sickness absence or leave predictors of sickness 
absence undiscovered. Frailty models can be fitted using 
the freely available statistical software package R (14), 
and SAS macros for gamma frailty models using the EM 
algorithm are also available (http://www.biostat.mcw.
edu/software/SoftMenu.html) (20, p 416).

This contribution has discussed the analysis of sick-
ness absences. Other aspects of sickness absence, like 
the number of workdays lost due to sickness absence or 
the total cost of sickness absence, could be considered 
as the relevant outcome measure. The choice of outcome 
measure is crucial in the study design, and the choice 
of the statistical model should be made subsequently. 
Analyzing sickness absences does not yield information 
about the duration of the sickness absences or about the 
number of sickness absence days. Frailty models can 
also be used to address these aspects by regarding people 
who are sick to be at “risk” of returning and analyzing 
the (possibly censored) time until return.
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