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Maximizing accuracy and precision using individual and grouped exposure 
assessments 
by Noah S Seixas, PhD,' Lianne Sheppard, PhD2 

Seixas NS, Sheppard L. Maximizing accuracy and precision using individual and grouped exposure assessments. 
Scand J Work Environ Health 1996;22:94-101. 

Objectives Random errors in exposure data were explored to determine their effect on exposure-response 
relationships using individual, grouped, or combined (grouped and individual) exposure assessment methods. 
Methods Monte Carlo simulations were conducted by generating small "studies" of one hundred subjects 
divided into four exposure groups. Observed exposure data were generated for each individual using assumed 
inter- and intraindividual variances and a lognormal distribution. The data were used to calculate the following 
three estimates of exposure: an individual mean, a group mean, and a hybrid estimate using the James-Stein 
shrinkage estimator. The exposure estimates were regressed on generated (continuous) "health outcomes," and 
the regression results were stored and analyzed. 
Results Random errors in exposure data resulted in attenuation of the exposure-response relationship when the 
individual estimates were used, especially when the within-subject variability was high. The attenuation was 
substantially controlled by the group mean estimate, however, at a cost of decreased precision. The hybrid 
estimator simultaneously controlled both bias and imprecision in the observed exposure-response function. 
@ O ~ C ~ U S ~ O ~ S  While estimates of exposure based on individual means may result in attenuation of the expo- 
sure-response relationship, grouped estimates may control bias while decreasing precision. Combining individ- 
ual and group estimates can simultaneously control both types of error. However, further research is required to 
determine how robust these findings are to different error structures, grouping strategies, exposure-response 
models, and exposure assessment methods. 

Key terms attenuation bias, Berkson error model, James-Stein estimator, measurement error, variance compo 
nents. 

In recent years the importance of accurate exposure as- 
sessment to occupational and environmental epidemiolo- 
gy has become widely recognized, and there has been a 
proliferation of research aimed at improving exposure 
assessment methods (1-4). Much of the research has 
been motivated by a recognition of the problems associ- 
ated with the effects of misclassification or measurement 
error on exposure-response analyses. In addition, there 
has been significantly increased attention given to the 
importance of measurement error issues in epidemiology 
(5) with a concomitant growth of research on measure- 
ment error in biostatistics (6-9). In an overview of 
measurement error problems in epidemiology, Willett 
(19) has suggested that "the quantitative assessment of 
exposure measurement error and correction for its ef- 
fects . . . is likely to be one of the most fruitful areas of 
development in epidemiology during the next several 
years [p 10391." 

While it has become common for occupational expo- 
sure assessment experts to refer to the attenuation of 
effect measures due to randomly misclassified exposure 
estimates, there has been an inadequate exploration of 
the specific effects of commonly used occupational or 
environmental exposure assessment techniques on expo- 
sure-response analyses. In particular, while exposure as- 
sessment based on measurements taken on individual 
study subjects is commonly thought of as a "gold stand- 
ard," feasibility concerns often dictate the use of expo- 
sure groups as the basis for assigning individual expo- 
sures - implying the introduction of a significant degree 
of error in the analysis (1 1). The actual effect of such a 
grouping strategy on the exposure-response analysis has 
been inadequately explored. 

Epidemiologic exposure assessors have also increas- 
ingly recognized the importance of integrating the expo- 
sure assessment process with the analysis of health out- 
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comes. For instance, it has been argued that a detailed 
understanding of the toxicologic and pharmacodynamic 
properties of an agent should be understood to define an 
appropriate exposure metric for use in an exposure-re- 
sponse analysis (12, 13). An integration of the exposure 
assessment and exposure-response analysis processes 
also requires coherence of the statistical methods used 
(14). These discussions generally imply that one must 
choose a "best" method or metric and accept the errors 
associated with that particular choice. An alternative ap- 
proach is to identify a hybrid method that combilles the 
strengths of each, so as to minimize the overall conse- 
quences or errors in the exposure-response analysis. 

I11 this paper, the integration of the exposure assess- 
ment and exposure-response processes is discussed in 
the context of one aspect of exposure assessment, indi- 
vidual and grouped exposure estimation. Linking expo- 
sure assessment and exposure-response processes 
demonstrates the effects of errors associated with each 
method through computer simulatioi~. 

Methods 

The results of individual and group exposure assessment 
methods for observed exposure-response relationships 
were explored with the use of a simple exposure-re- 
sponse study with Monte-Carlo simulation. The scenario 
assumed a small number of exposure groups in a study 
population with an equal number of subjects in each 
group and an equal number of exposure measurements 
taken on each individual. 

Simulations were conducted with four exposure 
groups with a total of 100 subjects in each realization of 
a "study." All the exposure values were assigned on the 
assumption that the data were lognormally distributed, 
and the analysis was conducted on the natural logarithms 
of the original values. The group geometric means, pg, 
were assigned as fixed values of 2.7, 7.4, 20.1, and 54.6 
(exponents of 1, 2, 3, and 4). "True" individual expo- 
sures (on a log scale), y,,, were generated from a normal 
distribution, given the log of the group geometric mean 
and an assumed interindividual variance, as represented 
by the interindividual geometric standard deviation 
(GSD,); that is, y,, - N{ln(p,q),[ln(GSD,)]2). An "ob- 
served" health outcome was then generated using a line- 
ar model: 

where w,,is the generated health outcome for individual i 
in group g. P is the exposure-response regression coeffi- 
cient, set to 1 for generating the observed outcomes, and 
the error variance, E,,, is normally distributed, the meall 
being 0 and the variance being equal to 0.01. 

A set of two "observed" exposure measurements, zgi,, 
was then generated for each illdividual using the subjects 
"true" exposure and a defined intraindividual variance: 
z,,, - N {J~ ,~ , [ I~ (GSD~]*} .  From this set of generated raw 
data, the observed individual (Z$,.) and group (Z,..) mean 
exposures were calculated and regressed (in separate 
models) on the observed outcome. The regression coeffi- 
cients were stored and the process, using the same input 
parameters, was repeated 300 times to ensure reasonably 
stable estimates. The mean regression coefficient and its 
standard error were then calculated and reported. 

The variance components were chosen to reflect the 
range that might be expected in typical occupational 
environments with the total variability, as expressed by 
the total geometric standard deviation (GSD,) of 1.5, 
2.5, 3.5, and 4.5. The total variability was distributed 
between the within person (GSD,) and between person 
(GSD,) variance components according to the follow- 
ing: 

[1n(GSD,)l2 = [1n(GSD,)l2 + [In(GSD,,,)I2 . 

Values of GSD, and GSD, of 1.33, 1.91, 2.66, and 3.89 
were adopted to satisfy this relationship. To limit the 
GSD, to 4.5, no combinations of GSD components of 
2.66 and 3.89 or 3.89 and 3.89 were used. 

Results 

The results of the sirnulation with individual and grouped 
exposure estimates are given in table 1. With the indi- 
vidual mean for the exposure variable, the attenuation of 
the regression coefficient is clearly observed, especially 
when the intraindividual variance is large and the interin- 
dividual variance is relatively small. The standard error 
of the coefficient follows a similar trend, generally be- 
coming larger as the attenuation bias increases. In con- 
trast, use of the group mean as the predictor substantially 
eliminated attenuation bias. Increasing the interindividual 
variability resulted in substantially increased uncertainty 
(larger standard errors), while the standard essor was not 
substantially affected by an increase in intraindividual 
variability. Group mean exposure estimates produced un- 
biased exposure-response estimates with lower standard 
errors than the individual means in situations where the 
intraindividual variability was relatively high and the 
interindividual variance was low. 

For a visualization of these results, the data and esti- 
mates from a single iteration, using inter- and intraindi- 
vidual GSD values of 2.66, were plotted and are shown 
in figures 1A and 1B. Figure 1A shows the 100 individu- 
al means plotted against the outcome with the "ex- 
pected" regressio~l line (solid line) of the slope equal to 1 
and the least squares fit line (broken line), demonstrating 
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Table 1. Simulation results (mean coefficient and standard error) for 100 persons distributed into four exposure groups over a range of 
inter- and intraindividual variances using individual and group means as the exposure m e t r i ~ . ~  (GSD, = intraindividual geometric stand- 
ard deviation, GSD, = interindividual geometric standard deviation, GSD, = total geometric standard deviation) 

GSD, Individual mean Group mean 

GSDB1 .33 GSD, 1.91 GSD,2.66 GSD, 3.89 GSD, 1.33 GSD, 1.91 GSDB2.66 GSDB3,89 

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

a The simulation parameters were four groups of 25 individuals each with group geometric means of 2.7, 7.4, 20.1, and 54.6 and two observed exposure 
measurements each. The results given are the mean regression coefficients and standard errors (SE) generated by 300 iterations. 
These variance components were not utilized so that the GSD, could be constrained to < 4.5. 

0 2 4 6 

Exposure:Log Individual Mean 

0 2 4 6 

Exposure:Log James-Stein Estimate 

0 2 4 6 

Exposure:Log Group Mean 

Figure 1. Plot of simulation results from a single iteration assuming 
intra- and interindividual variability of a geometric standard deviation 
of 2.66. A = results for the individual mean, B = results for the group 
mean, C = results for the James-Stein estimator. (See the text for 
definitions.) 
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the attenuation of the slope due to random error. Figure 
1B shows the same 100 individuals plotted according to 
their group means. Though the regression line of the 
grouped data is very close to the expected value, it is 
easy to imagine how increased levels of interindividual 
variability, resulting in a larger spread of the data along 
the y-axis, would lead to instability in the resulting slope 
parameter. 

These sitnulatio~ls demonstrate that when there is 
relatively little interindividual variability within groups, 
the group mean perforins well by eliminating attenuation 
bias at only a slnall cost of increased variance. In fact, 
when the GSD, is low and the intraindividual variability 
is large, the group meall actually out-performs the indi- 
vidual mean with respect to both bias and uncertainty. 
However, when the GSD, is large, the attenuation of the 
individual mean bias is relatively s~nal l  and the increased 
variability associated with the use of the group mean is 
not compelling. 

In summary, there is a trade-off between bias and 
variance in the choice of the individual or group mean 
for exposure assessment strategies. Generally, the indi- 
vidual mean will be associated with bias in the regres- 
sion coefficient, whereas the group mean substantially 
eliminates this bias. However, the elimination of bias 
comes at a cost of increased uncertainty, which under 
some circumstances may be a very poor trade-off. These 
observations led us to consider whether there is some 
way to exploit both the stability associated with the 
spread of individual means and the decrease in bias asso- 
ciated with grouping individuals. 

It is useful to consider the individual and group means 
as two plausible estimators of individual exposure, each 
contributing different but important informatio~~. The in- 
dividual mean is an unbiased estimate of true individ~~al 
exposure because, in random sampling, each exposure 
measurement is an unbiased estimate of true exposure. 
But the individual estimate is also imprecise because 
there is only a small number of samples per individual. 
Use of the individual exposure estimate leads to attenua- 
tion of the exposure-response slope, or regression coeffi- 
cient, 0. On the other hand, the group mean has greater 
precision due to its combining information across all 
group members, but it is a biased estimate of each indi- 
vidual's true exposure level. Use of the group mean 
exposure estimate in a regression model leads to an un- 
biased regression coefficient. The slope parameter is es- 
tirnated with greater uncertainty because there is less 
variation in the predictor relative to the outcome. 

Ideally, an estimator of exposure would improve both 
the precision and the bias of the observed exposure- 
response regression coefficient. We propose a weighted 
mean of the two simpler quantities: 

where i,.. is the group mean exposure and is,. is the 
individual mean. B, is the weighting factor that deter- 
mines the optimal combination of the group and individ- 
ual means. This estimator, 0, is called the James-Stein 
shrinkage estimator, originally described by James & 
Stein (15) and further discussed by Efron & Morris (16) 
among others. Though originally developed to improve 
multivariate estimates of population parameters, it has 
more recently been shown to be effective in reducing 
measurement error bias in linear and ~lonlinear regres- 
sion, on the assumption of a Gaussian error distribution 
( 1  7). We estimate B, as 

where 
8 ,  I 

and 
il 

for z,,, measurements taken on i=l, . . . , iz workers in 
g=l ,  . . . , G groups over j=l ,  . . . , Jrepetitions (or days). 
This weighting factor estimates 

for a fixed number of repeated measurements on each 
individual. As the intraindividual variability increases 
relative to the interindividual variability (and the ex- 
pected measurement error attenuation bias increases), 
more weight is put on the group mean (in equation 1); 
the bias is controlled. However, when the intragroup 
variance is srnall in comparison with the intergroup var- 
iance, then more weight is placed on the individual mean, 
the spread of the exposure variable is maximized, and 
the uncertainty in the exposure-response relationship is 
reduced. 

The James-Stein estimator has been described previ- 
ously for a single analytic group [see, eg, Whitternore 
(17)], that is, where there is a single group mean (the 
populatio~l mean) rather than several group-specific 
means. We have generalized the estimator to be group- 
specific under the assumption that the exposure groups 
contain some meaningful infortnation about individual 
exposures. Thus the shrinkage given by the James-Stein 
estimator is towards the group mean rather than towards 
the population mean. This is consistent with our focus on 
the compariso~l between individual and group mean ex- 
posures in exposure-response models. We plan further 
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methodological development to clarify the benefit of an 
overall versus a group-specific shrinkage estimator. 

The simulation conducted previously using the indi- 
vidual or group means was re-run with the James-Stein 
estimator as the exposure metric; the results are provided 
in table 2. As predicted, the attenuation bias was substan- 
tially less than it was for the individual mean, and the 
standard errors of the estimates were likewise reduced 
from the group mean case. The dispersion of individual 
exposure estimates having been reduced with the use of 
the group means, a better estimate of the regression line 
was obtained, as shown in figure 1 C. Thus it appears that 
if strength is borrowed from both the group and individu- 
al mean estimates to create a combined exposure esti- 

Tahle 2. Simulation results using the James-Stein estimator as 
the exposure metric."GSD, = intraindividual geometric standard 
deviation, GSD, = interindividual geometric standard deviation, 
GSD, = total geometric standard deviation) 

GSD, GSD, 

1.33 1.91 2.66 3.89 

Mean SE Mean SE Mean SE Mean SE 

a The simulation parameters were 100 individuals in four exposure groups 
of 25 each. The results given are the mean regression coefficient and 
standard errors (SE) generated by 300 iterations. 
These variance components were not utilized so that the GSD, could be 
constrained to < 4.5. 

lndivldual Mean 

Group Mean 

James-Stem Estimate 

Figure 2. Results of simulations using individual, group, and James- 
Stein estimates of exposure on the assumption of a geometric standard 
deviation for intraindivisual variance components (GSD,) equal to 
1.91 and varying levels of the geometric standard deviation for inter- 
individual variance components (GSD,). The results are shown as the 
mean regression coefficients and their associated standard errors 
(error bars). 

mate, problems associated with the use of either estima- 
tor alone in a regression model may be reduced. 

A visual comparison of the group, individual, and 
James-Stein estimator results from tables 1 and 2 with 
the intraindividual variability of G S D ,  equal to 1.91 is 
presented in figure 2. In this display, the bias associated 
with the individual mean and the large standard errors 
associated with the group mean are clearly observed, 
whereas the James-Stein estimator substantially reduces 
the bias while maintaining reasonably high precision. 

Discussion 

Errors in the quantification of exposure, including both 
bias and imprecision, are a primary limiting factor in 
many occupational epidemiology studies because of their 
effects on exposure-response analyses. A simple system- 
atic eror  or bias in an exposure metric (on an additive 
scale) produces a shift in the observed exposure-response 
relationship of the same magnitude as the bias. As a 
consequence of such a shift, the degree of disease pre- 
dicted at a particular level of exposure may be incorrect, 
and more or less disease than expected may occur at the 
stated level of exposure, depending on the direction of 
the bias. A bias of this type in an exposure-response 
relationship might be used to produce either an unneces- 
sarily strict, or inadequately protective, exposure guide- 
line. However, in the case of an additive bias uncol-se- 
lated with the outcome, the slope of the exposure-re- 
sponse function is unaffected, and the increment of in- 
creased or decreased disease expected for a given change 
in exposure levels (the slope of the regression line) would 
be accurately estimated. 

A measured or estimated exposure metric may also 
have a substantial degree of random error associated 
with it. Random errors may arise for a variety of reasons 
depending on the data available, the methods used to 
summarize the data, and the metric adopted to express 
each individual's exposme. For instance, it is well known 
that most airborne occupational exposures vary from day 
to day with a pattern that approximates a lognormal 
distribution with geometric standard deviations of four 
or even higher (3, 18). As a result of this high environ- 
mental variability, the long-term mean exposure esti- 
mated with a small number of measurements will have a 
large standard error, that is, it is estimated with a high 
degree of uncertainty. 

According to classical measurement error theory, 
such random error in exposure results in an exposure- 
response relationship that is generally attenuated toward 
the null (7). Like a systematically biased exposure met- 
ric, attenuation bias from random errors will usually re- 
sult in an inaccurately predicted degree of disease, given 
a specified degree of exposure. More importantly, in the 
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context of etiologic epidemiology, measurement error 
bias may obscure the recognition of an underlying causal 
association. The degree to which random error biases the 
exposure-response function is determined by the degree 
of imprecision in the individual's exposure metric (the 
intraindividual variance) and the variance of exposure 
across the studied population (the interindividual vari- 
ance), as was demonstrated in the simulations. 

The relationship between the true underlying expo- 
sure-response function and the observed regression coef- 
ficient, given classical measurement error, may be de- 
scribed by: 

where p is the true regression coefficient and b is the 
observed coefficient given intra- and interindividual 
variances in exposure of 02,  and 02,, respectively. Thus, 
if 02, is of the same magnitude as G~, , h equals 1 and 
the observed regression coefficient would be half that of 
the true exposure-response relationship. Note that 02, 

here is the variation in exposures across the whole popu- 
lation, and not within an exposure group as in the simu- 
lations. As the precision of the individual's exposure 
metric becomes small compared with the spread of the 
exposures across the population, the observed coefficient 
approaches the true relationship. 

For classical measurement error, the uncertainty in 
an individual's measurement results in a spreading or 
overdispersion of the exposure values along the inde- 
pendent variable in comparison with the outcome, and, 
as a result, the regression line is attenuated. If exposure 
is collapsed to a group mean, and assuming a linear 
exposure-response model, the errors associated with each 
individual's exposure are averaged across the group and, 
for the group as a whole, are close to 0. As a result of this 
grouping, the overdispersion in exposure is controlled, 
although some of the information about individual true 
exposures is also eliminated. While exposure is still mis- 
measured under these conditions, attenuation of the re- 
gression coefficient in the exposure-response analysis is 
substantially controlled, as demonstrated in this paper. 
The control of attenuation due to measurement error with 
appropriate grouping is due to the much smaller error 
variance of the group mean relative to the individual 
mean. It may also be approximately described by the 
Berkson error model (7). Under the Berkson model, the 
bias in the regression coefficient is reduced, while the 
uncertainty associated with the estimate may increase. 
Thus, as demonstrated in the current simulations, a trade- 
off is implied by using a grouped exposure assessment: 
while grouping reduces bias in the exposure-response 
model, it also increases uncertainty. With either individ- 

ual or group exposure assessment approaches, the likeli- 
hood of observing a statistically significant exposure- 
response relationship, where one truly exists, is therefore 
reduced. 

In most occupational epidemiology studies, individu- 
al estimates are either unavailable or have low precision 
because there are insufficient data available on each sub- 
ject to estimate individual exposures reliably. As a result, 
exposure groups are assumed to be predictive of expo- 
sure for all group members. Groups may be defined on 
the basis of worksite, job title, or department but may 
also be defined by a more complex set of modeled expo- 
sure determinants. Quantitation is done on the basis of 
the group, and some relevant parameter of the group's 
exposure distribution, usually the arithmetic mean, is 
assigned to each individual in that group. The validity of 
this approach rests on the assumption that the exposure 
data available for the group are truly representative. Gen- 
erally, representativeness is obtained by taking a random 
sample of individuals in the group, and days over the 
period of interest, although other more efficient strate- 
gies could be adopted to obtain a representative estimate 
for the group. 

Grouped exposure assessment has been used by epi- 
demiologists for a long time (19). More recently, the 
efficiency of grouping for exposure assessment has been 
recognized (20) and widely accepted by the industrial 
hygiene community as the basis for efficient strategies 
(21). The term homogeneous exposure group (HEG) has 
been widely adopted, implying that not only is grouping 
a more efficient strategy for assessment, but that individ- 
uals within an identified group have very similar day-to- 
day exposure distributions and essentially the same ex- 
pected or long-term mean exposure. 

The homogeneity assumption has been substantially 
challenged through the analysis of intra- and interindi- 
vidual variance components from a set of 165 exposure 
groups defined in published studies (1 1, 22). Each data- 
set in these analyses included repeated measurements of 
exposure on each study subject, and the results demon- 
strated very high interindividual variances within many 
groups. This analysis concluded that most homogeneous 
exposure groups are actually inhomogeneous, with a very 
wide spread of long-term individual means. About 30% 
of the groups had over 10-fold differences between the 
lower 2.5th and 9721th percentiles of the individual 
means. Thus the use of the group mean exposure in these 
studies implies a high degree of error in the assigned 
exposures in comparison with the true individual expo- 
sures. 

The view that we must choose either grouped or 
individual assessment is very limited. The use of expo- 
sure groups implies that we believe that individuals be- 
longing to that group have something in common in 
relation to exposure - that is, group membership is a 
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useful, if imperfect, predictor of exposure. If we ignore 
the infor~llation derived from group membership itself, 
we have lost valuable information. However, we also 
know that individuals within groups differ from each 
other - that there is individual-specific information that 
distinguishes individuals. By utilizing both the informa- 
tion that distinguishes the individual from the group and 
information about the group that makes it an identifiable 
unit, we may be able to nlaxirnize the use of all available 
information and thereby reduce the effects of measure- 
ment error in terms of both accuracy and precision. 

In the particular context developed in this presenta- 
tion, in which group and individual means were calcu- 
lated from data assumed to be randomly collected from 
each group member, the James-Stein shrinkage estimator 
was shown to work well in simulation. A different vari- 
ance-weighted estimator has been presented to attempt 
to resolve the on-going debate about the apparent associ- 
ation between electromagnetic fields and childhood 
leukemia (23). Exposure represented by a simple cate- 
gorization of wiring configuration near the residence has 
been associated with childhood leukemia in several 
studies, while individual exposure measurements have 
generally not been predictive of the outcome. In this 
study, individual nleasurelnents of residential electro- 
magnetic fields were combined with the estimated mean 
field-strength predicted from a model developed from 
wiring co~lfiguration and other factors. The estimator 
used a variance-weighted combination similar to the 
James-Stein estimator; however it relied on information 
from the predictive   nod el rather than just the grouping 
variable. In this situation, no improvement in the expo- 
sure-response relationship was observed after the two 
sets of information were combined, and the authors con- 
cluded that the long-term mean exposure intensity pre- 
dicted by their model, and estimated by the measure- 
ment, was probably not the appropriate summary expo- 
sure metric. 

The presented si~nulations contain some assumptions. 
First, we have assumed that the exposure distributions 
are lognorn~al and that the exposure-response analysis is 
conducted on the log-transformned exposure and outcoine 
data. This approach is by no means uniformly adopted, 
but is not unreasonable since it implies lnultiplicative 
relations between covariates and supporls the use of hy- 
pothesis tests which rely on normally distributed errors. 
The extension of this analysis to other data distributions 
and nonlinear models requires further development. 

Second, we have considered the group geometric 
mean values as fixed effects, rather than as randolnly 
distributed paraineters with an intergroup variance com- 
ponent. In future development we plan to consider a 
particular study setting as only an example of the uni- 
verse of study situations and to extend the analysis to 
address the intergroup variance, as well as the inter- 

individual and intraindividual variance components. This 
approach will allow a more generalizable conclusion con- 
cerning the three components of variance. However, to 
demonstrate the effect of the three assessment strategies 
addressed, the use of fixed group means as a simplifica- 
tion does not seem unreasonable. In effect, the fixed 
effects inlply that a given industrial setting is studied and 
the true group exposure levels are stationary or fixed 
quantities that are determined prior to the study. 

Third, although our study was confined to sin~ula- 
tions, the study was designed to represent typical cross- 
sectional investigations in which a srnall number of job 
groups are observed and a limited number of measure- 
ments are talien on each subject. For instance, a study of 
pulmonary function changes over a workshift and work- 
week might involve exposure measurements taken on 
each subject on the Monday and Friday of spirometric 
testing. These rneasurernents could also then be used on 
a group basis to determine the long-term mean exposure 
of individuals performing that job. 

Finally, and perhaps most importantly, we have as- 
sumed that the data gathered are truly representative of 
exposure. While this assumption is integral to our simu- 
lations, the realities of field data collection frequently 
make the goal of obtaining representative random sam- 
ples elusive. In fact, nonrepresentative sampling may 
introduce biases in the exposure variables which would 
add another potentially very significant type of error to 
these analyses. 

Although our ability to address this question is lim- 
ited by the constraints of the developed simulations, what 
do the current results suggest in terins of how such group- 
ing should be conducted? While the reduction of bias 
demonstrated with a grouping method suggests that de- 
fining the groups as inclusively as possible (a  large 
nuinber of individuals in a small number of groups) 
would be advantageous, the groups should be defined to 
preserve the largest possible spread of exposures be- 
tween groups. Broadening a group's definition to include 
a larger number of individuals involves both increasing 
precision (due to nlore data on the group and conse- 
quently lower error variance) and decreasing precision 
due to a larger group exposure variance (assuming that 
the group becomes more heterogeneous as it increases in 
size). In addition, defining a larger group will tend to 
move the group means toward the population mean and 
thus narrow the spread of exposure values used across 
the populatioil and increase the uncertainty with which 
the exposure-response relationship can be estimated. 
Thus understanding the effects of alternative grouping 
strategies will depend on the analysis of intra- and inter- 
individual variance components under the different strat- 
egies; sampling campaigns should be conducted to allow 
for these analyses. The efficient design of grouping strat- 
egies must also consider alternative exposure distribu- 
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tions, unbalanced exposure sampling designs, ilonli~lear 
exposure-response relations, and group misclassification 
rates. Additional co~lsiderations must be made if there is 
residual confounding introduced by unmeasured, mis- 
measured, or simply confounding covariates. Simulation 
studies to address these issues are now being planned. 

Extension of the concept of combi~l i~lg different types 
or levels of information to achieve an improved exposure 
metric in other contexts will require modified approach- 
es. For instance, subjective esti~nates derived for time 
periods in which there were no industrial hygiene meas- 
urements taken might be combined effectively with quan- 
titative ineasurements from other periods, if the nature of 
the errors associated with both i~lformation sources call 
he uilderstood sufficiently. 

Given the substantial limitations of many types of 
available exposure information, methods which combine 
the strengths of several types of data into the exposure 
assessment process - in ways which reduce the effects 
of the errors of each - are required for continuing 
progress in occupational epidemiology. The proposed 
method, combining individual and grouped meall expo- 
sure levels through the use of the James-Stein estimator, 
is only one limited application of this concept. Combin- 
ing alternative types of data through an understailding of 
their error structures and explicit linking of the exposure 
assessment and exposure-response analyses will help de- 
rive strength from each source of exposure information. 
In this manner, the effects of raildo~n errors call be mini- 
mized, and our understanding of occupational health haz- 
ards will continue to advance. 
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