How does accelerometry-measured arm elevation at work influence prospective risk of long-term sickness absence?¹

by Nidhi Gupta, PhD,² Charlotte Lund Rasmussen, PhD, Mikael Forsman, PhD, Karen Søgaard, PhD, Andreas Holtermann, PhD

- 1. APPENDICES
- 2. Correspondence to: Nidhi Gupta, National Research Centre for the Working Environment, Lerso Parkalle 105, DK-2100 Copenhagen, Denmark. [E-mail: ngu@nfa.dk]

Appendix A. An example showing how we compare the traditional cox analytics and compositional cox analytics in investigating the association between the worktime composition B and risk of long-term sickness absence. The worktime composition B contains worktime spent with arm elevation >60° in upright body position, arm elevation \leq 60° in upright body position.

Analytical Steps	Traditional Cox analytics	Compositional Cox analytics
Exposure definition (continuous variables in minutes)	Minutes spent on three exposures (i.e., arm elevation>60°, arm elevation ≤60°, and non- upright position) treated as three continuous independent exposures.	These three exposures within a composition of worktime are transformed into isometric log-ratios (ilrs) resulting in two ilrs: 1. $ilr1_i = \sqrt{\frac{2}{3}} \ln \left(\frac{Arm \ Elevation > 60^o \ (min)_i}{\sqrt[2]{Arm \ Elevation \le 60^o \ (min)_i \times Non - upright \ position(min)_i}} \right)$ 2. $ilr2_i = \sqrt{\frac{1}{2}} \ln \left(\frac{Arm \ Elevation \le 60^o_i}{Non - upright \ position_i} \right)$ Where <i>i</i> is one worker The unit of the exposure is irreverent to obtain ilrs.
Cox model	$ \begin{split} h_{LTSA}(t) &= h_0(t) \exp(B_1 arm \ elevation \leq 60^0 + B_2 arm \ elevation > 60^0 + B_3 non - upright \ position + B_4 age + B_5 sex + B_6 BMI + B_7 lift/carry + B_8 worktype) \\ ln\left(\frac{h_{LTSA}(t)}{h_0(t)}\right) &= B_1 \leq 60^0 + B_2 > 60^0 + B_3 non - upright + B_4 age + B_5 sex + B_6 BMI + B_7 lift/carry + B_8 worktype \end{split} $	$\begin{aligned} h_{LTSA}(t) &= h_0(t) \exp(B_1 i lr_1 + B_2 i lr_2 + B_4 age + B_5 sex + B_6 BMI + B_7 lift/carry + B_8 worktype) \\ \text{So} \\ ln\left(\frac{h_{LTSA}(t)}{h_0(t)}\right) &= B_1 i lr_1 + B_2 i lr_2 + B_4 age + B_5 sex + B_6 BMI + B_7 lift/carry + B_8 worktype) \\ \end{aligned}$
	Where H ₀ =baseline hazard where the three exposures are not present B ₁ -B ₃ =estimates of the three exposures	H_0 =baseline hazard where exposures ("expressed as 2 ilrs") are not present B_1 - B_2 =estimates of the two ilrs B_4 - B_8 =estimates of the confounders

	B ₄ -B ₈ =estimates of the	confounders				
Results of	variables	HR and 95%CI	Variables	B (95%CI)	SE(B)	HR
Cox estimates	Arm elevation ≤60°	0.999 (0.997— 1.001)	llr ₁	0.3227 (0.052— 0.593)	0.138	1.38 (1.05— 1.81)
	Arm Elevation >60° Total Non-upright position	1.003(0.998-1.008) 1.0003 (0.998	llr ₂	-0.353 (-0.638— - 0.068)	0.145	0.70 (0.53— 0.93)
Interpretation of the Cox estimates	This analysis gives thre for each exposure (time elevation >60° in uprigh elevation ≤60° in uprigh time spent on non-uprig of the exposures (i.e. ti elevation >60° in uprigh interpretation of the Co per minute increase in elevation >60°, the risk 0.3%. Please note that these on continuous exposur in "hours" (this is why ti small with a narrow 95%	ee HR estimates, one e spent with arm t position, arm nt position, and total ght position). For one me spent with arm t position), the x HR estimates will be: time spent with arm of LTSA increases by estimates are based es in "minutes" and not he HRs might seem	traditional a analytics, th the three ex upright posi total time sp analytics. Example of increase in upright posi position and 38%. Because we difficult to in following: w Composition average con composition part to anot average con	is gives two HR estimation nalytics. This is because the exposures are two is posures (time spent wittion, arm elevation ≤60 pent on non-upright posi- how to interpret one of a log of worktime spent tion relative to arm elev- tion relative to arm elev- total non-upright posit e cannot interpret what the pret the HR estimate e first determined the sin n B (shown in bold in the mposition, We then det is by reallocating a fixe her part of the composi- mposition time is kept of nine theoretical compo- /.	se, in the co ometric log th arm elev in upright sition) like in the ilr ₁ -base t with arm e vation $\leq 60^{\circ}$ ion increas is 'one unit es. Thus, w ample ave table bel ermined the d amount of tion, so that constant. Th	ompositional pratios instead of vation >60° in position, and in the traditional sed HR: One unit elevation >60° in in upright ses LTSA risk by t of log', it is ve did the rage of ow). From this e new theoretical of time from one it the total nis way, we

Number of compositions	Reallocation (mins)	Arm elevation >60° (mins)	Arm elevation ≤60° (mins)	Non- upright (mins)	llr ₁	llr ₂
1	-2.0	14.7	287.3	155	-2.171	0.442
2	-1.5	15.2	286.8	155	-2.143	0.441
3	-1.0	15.7	286.3	155	-2.116	0.440
4	-0.5	16.2	285.8	155	-2.09	0.438
Average composition	0	16.7	285.3	155	-2.065	0.437
6	0.5	17.2	284.8	155	-2.04	0.436
7	1.0	17.7	284.3	155	-2.016	0.435
8	1.5	18.2	283.8	155	-1.992	0.433
9	2.0	18.7	283.3	155	-1.970	0.432

Using the cox model estimates (the two ilrs-HRs shown above), we predicted the hazard ratios that indicated what would be the LTSA risk if workers had one of the 9 new theoretical compositions compared to the sample average composition using the following formula:

 $HR = \exp[\hat{\beta}_1(x - \bar{x}) + \hat{\beta}_2(y - \bar{y})]$

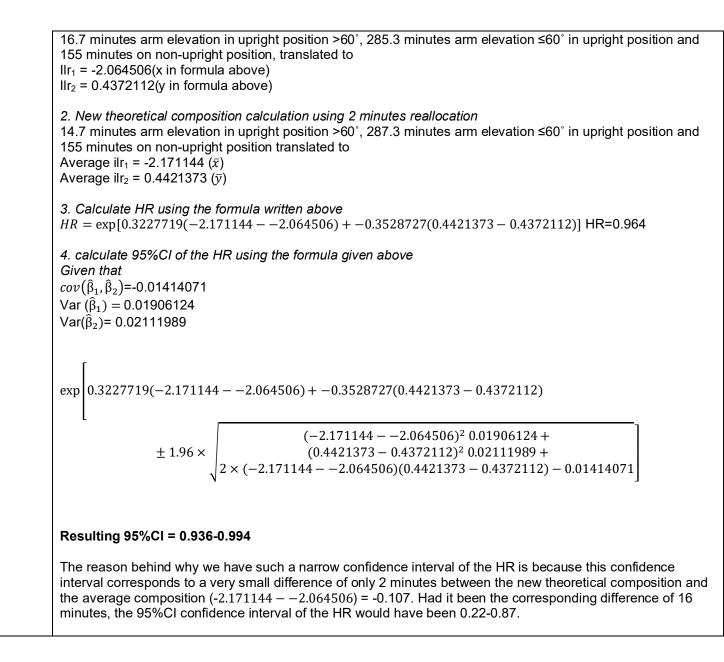
Where

HR = predicted hazard ratio

x and y = new theoretical ilrs (shown in the table above)

 \bar{x} and \bar{y} = average ilrs (row 5 in the table above)

 $\hat{\beta}_1$ and $\hat{\beta}_2$ = parameter estimates for ilr₁ and ilr₂, respectively


We calculated the 95%CI of this HR using the following formula:

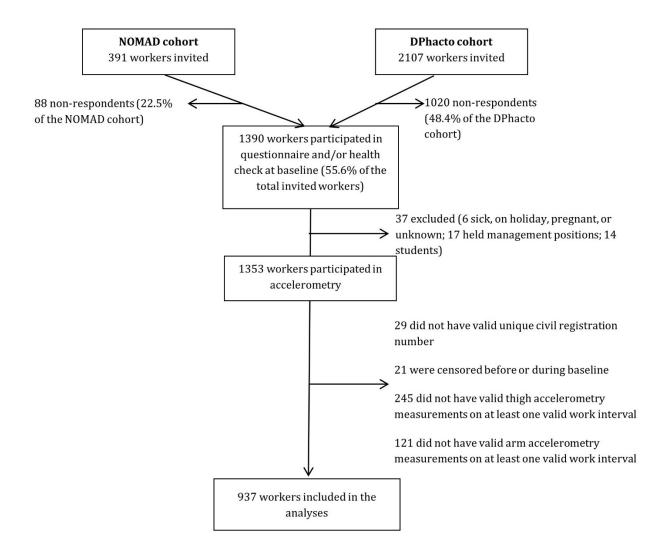
$$\exp\left[\hat{\beta}_{1}(x-\bar{x})+\hat{\beta}_{2}(y-\bar{y})\pm1.96\times\sqrt{(x-\bar{x})^{2}Var(\hat{\beta}_{1})+(y-\bar{y})^{2}Var(\hat{\beta}_{2})+2\times(x-\bar{x})(y-\bar{y})Cov(\hat{\beta}_{1},\hat{\beta}_{2})}\right]$$

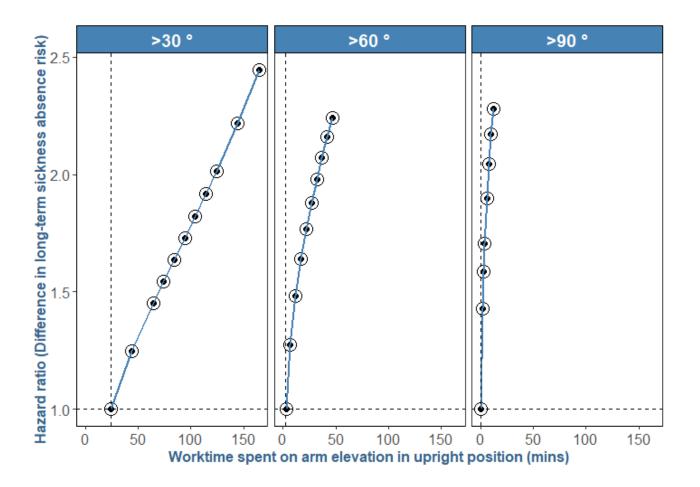
where Var=variance Cov=covariance

We give below an example of how we calculated these HR and its 95%CI:

1. Average composition calculation and corresponding ilrs

Appendix B. Resulting estimates of the Cox Proportional Hazard models to investigate the association between each composition (A, B, or C) of worktime spent on elevated arm work and risk of long-term sickness absence.

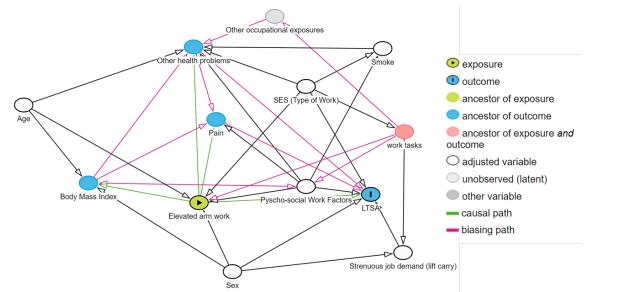

	Variables	В	SE(B)	Р
Composition A: arm eleva	ation >30° in upright body position, arm po	elevation ≤30° in upri sition	ght body position, and to	otal non-upright body
Crude	llr ₁	0.401	0.180	0.03
	llr ₂	-0.282	0.146	0.05
Fully adjusted	llr ₁	0.383	0.186	0.04
	llr ₂	-0.369	0.151	0.01
Composition B. Arm eleva	ation >60° in upright body position, arm po	sition	gin body position, and to	
Crude	llr ₁	0.316	0.132	0.02
	llr ₂	-0.252	0.138	0.07
Fully adjusted	llr ₁	0.3227	0.138	0.02
	llr ₂	-0.353	0.145	0.02
Composition C: Arm eleva	ation >90° in upright body position, arm po	i elevation ≤90° in upri sition	ght body position, and to	otal non-upright body
Crude	llr ₁	0.304	0.104	0.004
	llr ₂	-0.266	0.129	0.04
Fully adjusted	llr ₁	0.310	0.107	0.004
	llr ₂	-0.361	0.134	0.007


Crude: models adjusted for age and sex, fully adjusted: models adjusted for age, sex, body mass index, work time spent with lifting/carrying, and type of work (blue-collar or white-collar).

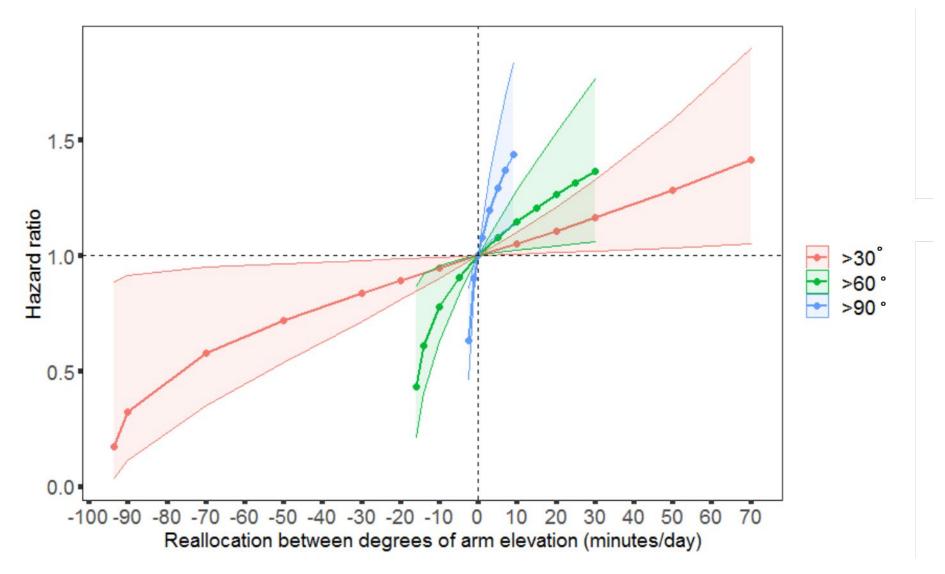
Appendix C. Results of the prediction method to interpret ilr-based effect sizes obtained from Cox Proportional Hazard Models in terms of change in LTSA risk corresponding to the theoretical change in minutes of work time composition A (arm elevation >30° in upright position, arm elevation $\leq 30^{\circ}$ in upright position and total non-upright position), B (arm elevation $\geq 60^{\circ}$ in upright position, arm elevation $\leq 60^{\circ}$ in upright position and total non-upright position with arm elevation $\geq 90^{\circ}$, in upright position with arm elevation $\leq 90^{\circ}$ and total non-upright position)

Number of reallocated composition	Change in composition (mins)	Realloca	ted composition (r	mins)	Worktime (mins)	95%CI Low	Hazard ratio	95%Cl high
Composition A	· · ·	Arm elevation	Arm elevation	Non-				
·		>30°	≤30°	upright				
		Firs	st Set					
1	-2.0	92.2	209.8	155	457	0.980	0.989	0.999
2	-1.5	92.7	209.3	155	457	0.985	0.992	0.999
3	-1.0	93.2	208.8	155	457	0.990	0.995	0.999
4	-0.5	93.7	208.3	155	457	0.995	0.997	1.000
Reference	0	94.2	207.8	155	457	1.000	1.000	1.000
6	0.5	94.7	207.3	155	457	1.000	1.003	1.005
7	1.0	95.2	206.8	155	457	1.001	1.005	1.010
8	1.5	95.7	206.3	155	457	1.001	1.008	1.015
9	2.0	96.2	205.8	155	457	1.001	1.011	1.020
		Seco	ond Set					
Reference	0	24.1	277.9	155	457	1.000	1.000	1.000
1	20	44.1	257.9	155	457	1.018	1.247	1.528
2	40	64.2	237.8	155	457	1.032	1.450	2.036
3	50	74.2	227.8	155	457	1.039	1.545	2.295
4	60	84.2	217.8	155	457	1.047	1.637	2.562
5	70	94.2	207.8	155	457	1.054	1.730	2.840
6	80	104.2	197.8	155	457	1.061	1.823	3.131
7	90	114.2	187.8	155	457	1.068	1.917	3.440
8	100	124.3	177.7	155	457	1.076	2.013	3.769
9	120	144.3	157.7	155	457	1.092	2.218	4.506
10	140	164.3	137.7	155	457	1.109	2.445	5.389
Composition B		Arm elevation	Arm elevation	Non-				
		>60°	≤60°	upright				
			st Set					
1	-2.0	14.7	287.3	155	457	0.936	0.964	0.994
2	-1.5	15.2	286.8	155	457	0.952	0.974	0.995
3	-1.0	15.7	286.3	155	457	0.968	0.983	0.997
4	-0.5	16.2	285.8	155	457	0.984	0.991	0.998
Reference	0	16.7	285.3	155	457	1.000	1.000	1.000

6	0.5	17.2	284.8	155	457	1.001	1.008	1.015
7	1.0	17.7	284.3	155	457	1.003	1.017	1.031
8	1.5	18.2	283.8	155	457	1.004	1.025	1.046
9	2.0	18.7	283.3	155	457	1.006	1.033	1.061
		Seco	ond Set					
Reference	0	3	299	155	457	1.000	1.000	1.000
2	4	7	295	155	457	1.041	1.273	1.558
3	9	12	290	155	457	1.068	1.483	2.059
4	14	17	285	155	457	1.087	1.639	2.472
5	19	22	280	155	457	1.101	1.768	2.837
6	24	27	275	155	457	1.113	1.879	3.172
7	29	32	270	155	457	1.124	1.980	3.487
8	34	37	265	155	457	1.134	2.072	3.788
9	39	42	260	155	457	1.143	2.159	4.078
10	44	47	255	155	457	1.151	2.241	4.362
Composition C		Arm elevation	Arm elevation	Non-				
•		>90°	≤90°	upright				
		Fir	st Set					
1	-2.0	1.0	301.0	155		0.624	0.754	0.912
2	-1.5	1.5	300.5	155		0.742	0.837	0.943
3	-1.0	2.0	300.0	155		0.840	0.901	0.966
4	-0.5	2.5	299.5	155		0.924	0.954	0.985
Reference	0	3.0	299.0	155		1.000	1.000	1.000
6	0.5	3.5	298.5	155		1.013	1.041	1.069
7	1.0	4.0	298.0	155		1.025	1.077	1.132
8	1.5	4.5	297.5	155		1.035	1.111	1.192
9	2.0	5.0	297.0	155		1.044	1.141	1.247
		Seco	ond Set					
Reference	0	<1	302	155		1.000	1.000	1.000
2	2	2	300	155		1.123	1.428	1.815
3	3	3	299	155		1.162	1.585	2.161
4	3	3	299	155		1.162	1.585	2.161
5	4	4	298	155		1.191	1.707	2.447
6	6	6	296	155		1.233	1.897	2.919
7	8	8	294	155		1.264	2.046	3.311
8	10	10	292	155		1.289	2.171	3.654
9	12	12	290	155		1.311	2.279	3.964



Appendix F. Results of the comparison between the three sensitivity analyses and main analyses investigating the association between the composition of work time spent with arm elevation and risk of long-term sickness absence. These three analyses were (1) analyzing the arm elevation during the whole work time –i.e., both during upright and non-upright body positions- instead of arm elevation in only upright body position, (2) adjusting for the potential confounding effect of influence at work compared to not adjusting for it, and (3) removing workers from the analysis who had a pre-event of LTSA compared to not removing them.


Type of analyses		Main analyses	n	Sensitivity analyses
analyzing the arm elevation	937	Compositon A*: LR Chisq=6.0, P=0.05	937	Compositon A**: LR Chisq=9.2, P=0.002
during the whole work time –i.e.,		Composition B:* LR Chisq=6.6, P=0.04		Compostion B**: LR Chisq=4.4, P=0.04
both during upright and non-		Composition C*: LR Chisq=9.9,		Compositon C**: LR Chisq=2.1, P=0.15
upright body positions- instead		P=0.007		
of arm elevation in only upright				
body position				
Adjusting/not adjusting for the	733	Compositon A*: LR Chisq=6.0, P=0.05	733	Compositon A*: LR Chisq=5.5, P=0.06
potential confounding effect of		Compostion B*: LR Chisq=6.5, P=0.04		Compostion B*: LR Chisq=5.5, P=0.06
influence at work		Compostion C*: LR Chisq=9.7, P=0.01		CompostionC*: LR Chisq =8.6, P=0.01
Removing/not removing workers	937	Compositon A*: LR Chisq=6.0, P=0.05	880	Compostion A*: LR Chisq=5.3, P=0.07
with pre event of LTSA		Compostion B*: LR Chisq=6.6, P=0.04		Compostion B*: LR Chisq=6.1, P=0.05
		Compostion C*: LR Chisq=9.9, P=0.01		Compostion C*: LR Chisq=6.9, P=0.03
	analyzing the arm elevation during the whole work time –i.e., both during upright and non- upright body positions- instead of arm elevation in only upright body position Adjusting/not adjusting for the potential confounding effect of influence at work Removing/not removing workers	analyzing the arm elevation937during the whole work time –i.e.,937both during upright and non-937upright body positions- instead937of arm elevation in only upright937body position733Adjusting/not adjusting for the733potential confounding effect of937Removing/not removing workers937	analyzing the arm elevation937Composition A*: LR Chisq=6.0, P=0.05during the whole work time –i.e.,Composition B.* LR Chisq=6.6, P=0.04both during upright and non-Composition C*: LR Chisq=9.9,upright body positions- insteadP=0.007of arm elevation in only uprightP=0.007body position733Adjusting/not adjusting for the733potential confounding effect ofCompostion B*: LR Chisq=6.0, P=0.04influence at work937Removing/not removing workers937with pre event of LTSASate Compostion B*: LR Chisq=6.6, P=0.04	analyzing the arm elevation937Composition A*: LR Chisq=6.0, P=0.05937during the whole work time –i.e.,Composition B:* LR Chisq=6.6, P=0.04Composition B:* LR Chisq=9.9,937both during upright and non- upright body positions- insteadComposition C*: LR Chisq=9.9, P=0.007P=0.007of arm elevation in only uprightP=0.007733body position733Compostion A*: LR Chisq=6.0, P=0.05733Adjusting/not adjusting for the influence at work733Compostion C*: LR Chisq=6.5, P=0.04733Removing/not removing workers937Compostion A*: LR Chisq=6.0, P=0.05880with pre event of LTSASompostion B*: LR Chisq=6.6, P=0.04Sompostion B*: LR Chisq=6.6, P=0.04Sompostion B*: LR Chisq=6.6, P=0.04

LR Chisq= Likelihood ratio chi-square statistics obtained from the cox model; *Composition A = arm elevation >30° in upright body position, arm elevation $\leq 30^\circ$ in upright body position, and non-upright body position (Figure 1A); *Composition B= arm elevation >60° in upright body position, arm elevation $\leq 60^\circ$ in upright body position, and non-upright body position (Figure 1B); and *Composition C= arm elevation >90° in upright body position, arm elevation $\leq 90^\circ$ in upright body position, and non-upright body position (Figure IC); ** Composition A = arm elevation >30° during whole work time, arm elevation $\leq 30^\circ$ during the whole work time; ** Composition B= arm elevation >60° during the whole work time, arm elevation $\leq 30^\circ$ during the whole work time; ** Composition B= arm elevation >60° during the whole work time.

Appendix G. Directed acyclic graph indicating the potential confounders that needed to be adjusted for when investigating the association

between worktime spent on elevated arm work and risk of long-term sickness absence (LTSA).

Appendix H. The direction and strength of the association between work time spent with arm elevation >30°, >60° and >90° in upright position, relative to work time spent with arm elevation \leq 30°, \leq 60°, and \leq 90°, respectively, and prospective risk of long-term sickness

absence. The X-axis represents the range of reallocations between; composition A: >30° and \leq 30°, composition B: >60° and \leq 60°, and composition C: >90° and \leq 90°; in upright position. Y-axis indicates the ratio of the hazards associated with the new reallocated composition and reference composition (average composition). "0" on y axis represents risk associated with reference average composition. The displayed association looks non-linear for panel ">90°". This is because when linear equations are performed on ilrs (the transformed composition A, B or C) and the results are then anti-logged, the results appear to be non-linear (1).

1. Dumuid D, Pedišić Ž, Palarea-Albaladejo J, Martín-Fernández JA, Hron K, Olds T. Compositional Data Analysis in Time-Use Epidemiology: What, Why, How. Int J Environ Res Public Health. 2020 Mar 26;17(7).