Original article

Scand J Work Environ Health 1996;22(5):360-363    pdf

doi:10.5271/sjweh.154

Glutathione S-transferase M1 null genotype as a risk modifier for solvent-induced chronic toxic encephalopathy

by Söderkvist P, Ahmadi A, Åkerbäck A, Axelson O, Flodin U

Objectives Exposure to organic solvents increases the risk of neuropsychiatric disability or chronic toxic encephalopathy (CTE). Polymorphisms in the biotransformation of xenobiotics and solvents may influence individual susceptibility to develop toxic effects. In this study the problem of whether there could be any association between the glutathione S-transferase M1 (GSTM1) null genotype and the risk for CTE, with regard to solvent exposure, was investigated.

Methods Sixty patients referred to a clinic because of some degree of some degrees of psychiatric or neurological symptoms, as well as exposure to solvents, were examined by means of a validated questionnaire and psychometric testing. The degree of exposure to solvents was assessed by a thorough interview. According to clinical findings, the patients were classified into three categories as those with solvent-induced CTE, those with incipient CTE, and those who were non-CTE patients. Afterwards, leukocyte DNA (deoxyribonucleic acid) was isolated and the GSTM1 null genotype was determined by an assay based on polymerase chain reaction, blindly with regard to both exposure and disease status.

Results The relative proportion (RP) of GSTM1 null genotypes was significantly increased for patients with a diagnosed CTE when they were compared with non-CTE patients (RP 2.55, 95% confidence interval 1.0--6.2). Dichotomizing the patients by high and low exposure revealed an increased risk for both GSTM1 gene carriers and the GSTM1 null genotype in the high-exposure group, the relative risks (RR) being 4.5 and 7.9, respectively. The chi-square for the Mantel extension for trend was 6.2 (P=0.025).

Conclusion The GSTM1 null genotype acts as a risk modifier for CTE among patients occupationally exposed to solvents. The risk seems to increase in a dose-dependent fashion.